Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron shielding and blanket neutronics study on low aspect ratio tokamak reactor

Yamauchi, Michinori*; Nishitani, Takeo; Nishio, Satoshi

Denki Gakkai Rombunshi, A, 125(11), p.943 - 946, 2005/11

Considering the geometrical characteristics of tokamak reactors with low aspect ratio, a basic neutronics strategy was derived to construct the inboard structure mainly for neutron shielding and produce enough tritium in the outboard blanket. The designs for optimal inboard shield were surveyed and necessary thickness was estimated to make the neutron flux low enough on the super-conducting magnet. In addition, the outer blanket designs were studied to attain the tritium breeding ratio (TBR) large enough for a self-sustaining fusion reactor on the basis of the advanced fusion reactor materials.

Journal Articles

Plan and strategy for ITER blanket testing in Japan

Enoeda, Mikio; Akiba, Masato; Tanaka, Satoru*; Shimizu, Akihiko*; Hasegawa, Akira*; Konishi, Satoshi*; Kimura, Akihiko*; Koyama, Akira*; Sagara, Akio*; Muroga, Takeo*

Fusion Science and Technology, 47(4), p.1023 - 1030, 2005/05

 Times Cited Count:4 Percentile:30.51(Nuclear Science & Technology)

The Fusion Council of Japan has established the long-term research and development program of the blanket in 1999. In the program, the solid breeder blanket was selected as the primary candidate blanket of the fusion power demonstration plant in Japan. In the program, Japan Atomic Energy Research Institute (JAERI) has been nominated as a leading institute of the development of solid breeder blankets, in collaboration with universities, for the near term power demonstration plant, while, universities including National Institute for Fusion Science (NIFS) are assigned mainly to develop advanced blankets for longer term power plant development. In the long term research and development program, ITER blanket module testing is identified as the most important milestone, by which integrity of candidate blanket concepts and structures are evaluated. In Japan, universities, NIFS and JAERI cover a variety of types of blanket development. This paper presents a plan and strategy for ITER blanket module testing in Japan.

2 (Records 1-2 displayed on this page)
  • 1